Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Create Safer, Healthier, and Better Sounding Interiors

 

Program: Architecture, Design and Building Science

This course explores a few of the many ways that interiors impact the health and well-being of the people inside them. From restrooms being designed to reduce contact with contaminated surfaces and inhibit the presence of bacteria, to acoustics solutions that absorb or isolate noise, making interiors more comfortable and productive. Biophilic design, a health-focused design concept that encourages the inclusion of plants, daylight, and natural elements like wood and stone, is also discussed, as are the options designers have for bringing stone elements inside.

...Read More

The History and Impact of Synthetic Turf

This course is designed to teach the history of synthetic turf, its application in water and energy conservation, pollution abatement, sustainable design, and its versatility in numerous landscaping applications and designs. Participants will become knowledgeable about synthetic turf and innovative applications that could be applied to their residential and commercial projects. The most current technological advances in the industry and the positive role synthetic turf plays in the environment.

Learning Objective 1:
Students will gain an increased awareness of the positive environmental impact of synthetic turf on water use, reduced energy demand and reduction of use of fossil fuels, reduced chemical application, and resulting reduction of water and noise pollution.

Learning Objective 2:
Students will become more informed on the newest synthetic turf material technologies available, including the use of soy based materials, as well as how the proper application of infills and proper material selection can benefit the health and safety of athletes.

Learning Objective 3:
Students will be more knowledgeable about the history and evolution of the technology and of landscaping and sports applications using synthetic turf.

Learning Objective 4:
Students will better understand the versatility of synthetic turf and its many uses in sustainable landscape design.

 

...Read More

An Introduction to Custom Balanced Doors

This course will introduce you to the custom balanced door. You will learn about the system components and the differences between a Balanced door and a conventional hinged or pivoted swing door. Then we'll take a closer look at how a balanced door works in an installation. Finally you'll learn about the specific engineering requirements needed to accommodate balanced doors.

HSW Justification:
Balanced doors are safer than conventional doors because they require a smaller interference zone on the sidewalk. Also, they open with ease which benefits smaller people, weak or disabled persons, and the elderly. The majority of this course deals with those benefits and with the mechanical features of the door that make these health and safety benefits possible.

Learning Objective 1:
Understand the differences between the balanced door and a conventional hinged or pivoted swing door

Learning Objective 2:
Know specific requirements for ADA handicap guidelines LO 5: Understand how the balanced door interfaces with power operation LO 6: Understand specific engineering requirements to accommodate balanced doors

Learning Objective 3:
Understand what components make up a typical balanced door system

Learning Objective 4:
Know how the design concept works in an actual installation

...Read More

Designing Beautiful High-Performance Building Envelopes

The building envelope has a lot of different jobs to do—from insulating the building so that it can be efficiently heated and cooled to providing air and water barriers that keep harmful moisture at bay, as well as providing the aesthetic face of the project. High performance building envelopes do all of those things extremely well. This article explores some of the latest high-performance solutions that can be used to create those high-performance envelopes.

HSW Justification:
A high-performance building envelope is necessary to create a building that is efficient and healthy. This article takes a look at how different components in the building envelope perform—giving architects the information they need to choose high-performance components that will produce a high-performing envelope.

Learning Objective 1:
Compare different types of continuous insulation in terms of the thermal performance they offer and the way they behave when exposed to water and fire.

Learning Objective 2:
Describe how insulated metal panels (IMPs) can be used on the envelope to improve building performance, create efficient and healthy interiors, and enhance design flexibility.

Learning Objective 3:
Explain how PET bottles can be upcycled into insulation creating a new product that contains recycled material and improves thermal performance of the building envelope.

Learning Objective 4:
Describe the ways that architectural metal wall systems enable architects to push the creative boundaries of their designs.

...Read More

924 & 1008 Lighting Controls

NFPA 70, the national electrical code details 2 different types of Emergency Lighting Control Devices—devices that guarantee that life safety lighting will be on at desired illumination levels in the event of an emergency. This course will help mitigate the confusion regarding the specification of these devices and understand their applications in the real world.

Prerequisite Knowledge: Knowledge of life safety systems, particularly a high-level understanding of the purpose of emergency lighting inverters and generators. In particular, ISO-1001/ISO-1002 would be a perfect lead into this course.

HSW Justification: This deals with life safety, the safe egress, and illumination of buildings in the event of an emergency.

Learning Objective 1: Understand the background technology where ALCR and BCELTS devices need to be deployed.

Learning Objective 2: Learn the difference between the technologies and reviews how they sit within one-line diagrams.

Learning Objective 3: Understand some of the real world tradeoffs between the device types as it relates to wiring, proximity and ease of testing.

Learning Objective 4: Understand the integration of lighting controls with the different types of ELCDs and review some tricks for how to reduce costs in systems.

...Read More

Dynamic Lighting - Realities, Practicalities, Potential

Dynamic lighting, also known as tunable, color-changing, and circadian lighting, is being adopted and employed in current lighting designs.  There are many studies showing the benefits of dynamic lighting in built environments.  Early adopters have seeded the market and several lighting manufacturers now employ some level of Dynamic Lighting. This course is intended to explore what  Dynamic Lighting is, how it works in commercial luminaires, how to control it, and where the lighting community is being directed by standards, regulation, and voice of the customer. 

At the end of this course, participants will learn:

  1. Define elements of dynamic lighting.
  2. Learn the uses of dynamic lighting.
  3. See illustrations of how to control dynamic lighting.
  4. Become aware of the regulations, standards, and customer requests that are driving adoption.
...Read More

Safety, Energy Savings, and Design Aesthetics in Upward Acting Sectional Doors.

This course will cover introductory level descriptions of various sectional door styles and how they impact energy efficiency, maximize ambient light, add to design aesthetics. Additionally, applicable varieties of industrial doors will also be included.

 

HSW Justification: Understanding upward acting door and safety device specification and installation contribute to health, safety and welfare of building occupants, including infants, children and the elderly, by helping avoid entrapment, injury, or exposure to exhaust gasses. Additionally, proper installation helps assure comfort control, energy efficiency and better design aesthetics.

 

Learning Objective 1: Students will be able to recognize and differentiate various types of sectional and industrial doors, with a focus on selecting door types that enhance occupant safety, support energy efficiency, and improve building design aesthetics for a healthier environment.

 

Learning Objective 2: Students will learn to specify upward-acting doors, prioritizing occupant health and safety by understanding how door selection impacts injury prevention, exhaust gas exposure, and energy conservation, while also enhancing natural light and aesthetic integration.

 

Learning Objective 3: Students will gain skills in assessing mounting conditions, headroom and side room requirements, and types of lifts and operators, with particular attention to how these considerations affect safety, mechanical reliability, and occupant welfare.

 

...Read More

Leveraging Advances in Parametric Design & Digital Fabrication in Architecture

This course will explore the cutting-edge union of design and technology by delving into parametric design and its symbiosis with digital fabrication, and how the vision is best achieved via vertically-integrated, technology-forward product manufacturers. We will also discuss strategies for effective collaboration with these manufacturers throughout the architectural design process.

Learning Objective 1: Students will learn about the use of parametric design in architecture, including its definition, history and current state.

Learning Objective 2: Students will learn about the marriage between parametric design and digital fabrication.

Learning Objective 3: Students will understand why vertical integration is an important operating model for product manufacturers looking to leverage parametric design.

Learning Objective 4: Students will understand how to partner with vertical manufacturers throughout the architectural design process and learn the advantages of this digital collaborative approach.

...Read More

Strategies for Designing with Integrated Lighting and Acoustic Solutions

This course will review the importance of acoustics in architecture, discuss the fundamental principles of sound management, explore how to design interior spaces to maximize occupants’ comfort, and review emerging tools to solve for both sound and lighting. It will also focus on the standards that govern acoustic requirements for diverse applications.

...Read More

Designing with Pre-Crimped Woven Wire Mesh

Designing with Pre-Crimped Woven Wire Mesh is a streaming video course that explores interior and exterior applications and functions for woven metal mesh products in architectural design. The course examines key functions of these materials, details the manufacturing process, and outlines critical specification considerations to ensure beautiful and long lasting installations.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×