Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Discussing Circadian Lighting and the WELL Building Standard with Marty Brennan

This course will explore the requirements, challenges, and best practices for achieving the Circadian Lighting Design Feature L03 in the WELL Building Standard version 2.0.

HSW Justification:
The purpose of this feature in the WELL Building Standard is to provide building occupants with an appropriate exposure to the type of light that can maintain circadian health and align their circadian rhythm with the day-night cycle. The support of the circadian system has been shown to have tremendous health benefits to the people in the space.

Learning Objective 1:
Explain the relationship between spectral power distribution (SPD) and circadian lighting.

Learning Objective 2:
Summarize the circadian lighting feature requirements in the WELL Building Standard v2.

Learning Objective 3:
Describe a few best practices that can help architects to meet this challenging circadian lighting criteria.

...Read More

Safety, Energy Savings, and Design Aesthetics in Upward Acting Sectional Doors.

This course will cover introductory level descriptions of various sectional door styles and how they impact energy efficiency, maximize ambient light, add to design aesthetics. Additionally, applicable varieties of industrial doors will also be included.

 

HSW Justification: Understanding upward acting door and safety device specification and installation contribute to health, safety and welfare of building occupants, including infants, children and the elderly, by helping avoid entrapment, injury, or exposure to exhaust gasses. Additionally, proper installation helps assure comfort control, energy efficiency and better design aesthetics.

 

Learning Objective 1: Students will be able to recognize and differentiate various types of sectional and industrial doors, with a focus on selecting door types that enhance occupant safety, support energy efficiency, and improve building design aesthetics for a healthier environment.

 

Learning Objective 2: Students will learn to specify upward-acting doors, prioritizing occupant health and safety by understanding how door selection impacts injury prevention, exhaust gas exposure, and energy conservation, while also enhancing natural light and aesthetic integration.

 

Learning Objective 3: Students will gain skills in assessing mounting conditions, headroom and side room requirements, and types of lifts and operators, with particular attention to how these considerations affect safety, mechanical reliability, and occupant welfare.

 

...Read More

Dynamic Lighting - Realities, Practicalities, Potential

Dynamic lighting, also known as tunable, color-changing, and circadian lighting, is being adopted and employed in current lighting designs.  There are many studies showing the benefits of dynamic lighting in built environments.  Early adopters have seeded the market and several lighting manufacturers now employ some level of Dynamic Lighting. This course is intended to explore what  Dynamic Lighting is, how it works in commercial luminaires, how to control it, and where the lighting community is being directed by standards, regulation, and voice of the customer. 

At the end of this course, participants will learn:

  1. Define elements of dynamic lighting.
  2. Learn the uses of dynamic lighting.
  3. See illustrations of how to control dynamic lighting.
  4. Become aware of the regulations, standards, and customer requests that are driving adoption.
...Read More

Pattern Mapping for Lasting Design

The pattern map evaluates a pattern on two key elements: structure and nature. This course explains why these two elements affect how we recognize and respond to patterns and examines ways to bridge architecture and nature by using architectural panel systems with patterned openings, and provide a sense of space, privacy, shade, or camouflage with cladding, screens, or railings.

 

HSW Justification: Architectural use of patterns plays a vital role in enhancing the Health, Safety, and Welfare (HSW) in of our built environments. Our mental well-being, for example, can be positively impacted through organic biophilic geometries that connect occupants to nature to positively affect mood and reduce stress, while geometric or crystalline patterns create the dynamic visual interest necessary for effective way-finding elements to prevent accidents and ensure safer navigation. Some patterns can also be visually transparent while others act as camouflage which can be an important consideration for surface treatment in circulation areas. From a macro perspective, patterns can promote inclusivity and community engagement, while enriching their overall user experience.

 

Learning Objective 1: Students will learn to compare patterns on a pattern map and explore how different geometries are perceived and processed in the mind of the user, how they contribute to issues affecting safety, and even encourage engagement in built environments.

 

Learning Objective 2: Students will learn to explain how different characteristics and application of a pattern’s functionality can impact on how we perceive visual space to improve safety and social interaction, as well as contribute to positive mental health.

 

Learning Objective 3: Students will learn the importance of selecting the most appropriate openness factor and base material for the given project objectives, for example, how to enhance natural light, improve air quality, and create a welcoming atmosphere in built environments.

 

Learning Objective 4: Students will learn how to apply HSW Best Practices to provide privacy, facade screening, camouflage, shade, or railings with architectural panels with patterned openings to best create a positive user experience.

...Read More

Create Safer, Healthier, and Better Sounding Interiors

 

Program: Architecture, Design and Building Science

This course explores a few of the many ways that interiors impact the health and well-being of the people inside them. From restrooms being designed to reduce contact with contaminated surfaces and inhibit the presence of bacteria, to acoustics solutions that absorb or isolate noise, making interiors more comfortable and productive. Biophilic design, a health-focused design concept that encourages the inclusion of plants, daylight, and natural elements like wood and stone, is also discussed, as are the options designers have for bringing stone elements inside.

...Read More

Improve Occupant Wellness and Productivity with Solar Shading Fabrics

Solar shading devices, while available in numerous weaves, textures, and colors, go beyond contributing to the aesthetics of a space. Specified correctly, solar shading devices can maximize daylighting benefits and contribute to occupant well-being, productivity, and engagement, while mitigating the detrimental effects of UV rays and glare.

Learning Objective 1:
Students will understand the benefits daylighting, including the psychological and physiological well-being of occupants, as well as its drawbacks, such as glare and solar heat gain

Learning Objective 2:
Students will become familiar with the types of solar shading fabrics available for use in commercial settings and their components, including operating systems, weave, color, and openness factor, and the ways in which these contribute to the control of daylighting.

Learning Objective 3:
Students will explore the benefits of solar shading devices that extend beyond light management, such as sound mitigation, sustainability, and antimicrobial properties.

Learning Objective 4:
Students will determine how to select the right fabric for an application, taking into account aesthetics and room conditions

...Read More

Strategies for Designing with Integrated Lighting and Acoustic Solutions

This course will review the importance of acoustics in architecture, discuss the fundamental principles of sound management, explore how to design interior spaces to maximize occupants’ comfort, and review emerging tools to solve for both sound and lighting. It will also focus on the standards that govern acoustic requirements for diverse applications.

...Read More

Designing Beautiful High-Performance Building Envelopes

The building envelope has a lot of different jobs to do—from insulating the building so that it can be efficiently heated and cooled to providing air and water barriers that keep harmful moisture at bay, as well as providing the aesthetic face of the project. High performance building envelopes do all of those things extremely well. This article explores some of the latest high-performance solutions that can be used to create those high-performance envelopes.

HSW Justification:
A high-performance building envelope is necessary to create a building that is efficient and healthy. This article takes a look at how different components in the building envelope perform—giving architects the information they need to choose high-performance components that will produce a high-performing envelope.

Learning Objective 1:
Compare different types of continuous insulation in terms of the thermal performance they offer and the way they behave when exposed to water and fire.

Learning Objective 2:
Describe how insulated metal panels (IMPs) can be used on the envelope to improve building performance, create efficient and healthy interiors, and enhance design flexibility.

Learning Objective 3:
Explain how PET bottles can be upcycled into insulation creating a new product that contains recycled material and improves thermal performance of the building envelope.

Learning Objective 4:
Describe the ways that architectural metal wall systems enable architects to push the creative boundaries of their designs.

...Read More

New Principles in Residential Design Using Opening Glass Walls

This course aims to familiarize you with the terminology, capabilities, and applications of operable glass walls in both interior and exterior residential settings. You will learn how operable glass walls can enhance the health, safety, and welfare of residents. Additionally, we will share ideas that you can incorporate into your current projects.

 

Learning Objective 1: Students will be able to explain the welfare aspect of design and product selection that enable equitable access to all, can elevate the human experience with daylight and outdoor access, and benefit the environment through sustainable building design.

Learning Objective 2: Students will be able to assess the safety aspects of incorporating product selections that protect buildings and people from harm and damage, particularly considering unexpected violence or vandalism.

Learning Objective 3: Students will be able to identify and recognize the significance of ongoing health concerns related to residential design and product selection.

Learning Objective 4: Students will be able to determine ways to incorporate the design principles as presented in case study examples into single family building projects.

...Read More

What Every Design Pro Should Know About the Replica Green Wall Trend

Program: Landscape Environmental Design

This course will describe the replica Green Wall Trend, that is the use of biomimicry in artificial plants in interior and exterior green wall systems. The trend toward biomimicry is driven by low cost, low maintenance, very high quality plant substitutes, and no water, light, power or HVAC resource requirements. Yet, Replica installations provide the same aesthetic and evoke the same desirable biophilic responses as live plants.

HSW Justification:
Replica Green Walls have all the biophilic benefits of green walls, such as promoting healing, reducing anxiety, and attenuating noise. Replica green wall spaces are especially conducive to gathering and can foster community, encourage group meeting and communication, and promote human interaction. In addition, they have added sustainability benefits by eliminating regular maintenance, the need for water for irrigation, or the need for electrical energy for light, or the need for electrical and/or natural gas for heating or cooling.

Learning Objective 1:
Students will be able to define a Replica Green Wall and describe its benefits and advantages

Learning Objective 2:
Students will be able to identify and describe the quality indicators in a green wall, including the types of systems available, the types of foliage available, and the areas of research and development underway.

Learning Objective 3:
Students will be able to describe appropriate applications for a replica green wall.

Learning Objective 4:
Students will be able to list in detail the various methods of installation.

Note: The Continuing Architect is permitting the brand name of this product to be mentioned because it was the only product of its type and is patent pending.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×