Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

The History and Impact of Synthetic Turf

This course is designed to teach the history of synthetic turf, its application in water and energy conservation, pollution abatement, sustainable design, and its versatility in numerous landscaping applications and designs. Participants will become knowledgeable about synthetic turf and innovative applications that could be applied to their residential and commercial projects. The most current technological advances in the industry and the positive role synthetic turf plays in the environment.

Learning Objective 1:
Students will gain an increased awareness of the positive environmental impact of synthetic turf on water use, reduced energy demand and reduction of use of fossil fuels, reduced chemical application, and resulting reduction of water and noise pollution.

Learning Objective 2:
Students will become more informed on the newest synthetic turf material technologies available, including the use of soy based materials, as well as how the proper application of infills and proper material selection can benefit the health and safety of athletes.

Learning Objective 3:
Students will be more knowledgeable about the history and evolution of the technology and of landscaping and sports applications using synthetic turf.

Learning Objective 4:
Students will better understand the versatility of synthetic turf and its many uses in sustainable landscape design.

 

...Read More

Designing with Pre-Crimped Woven Wire Mesh

Designing with Pre-Crimped Woven Wire Mesh is a streaming video course that explores interior and exterior applications and functions for woven metal mesh products in architectural design. The course examines key functions of these materials, details the manufacturing process, and outlines critical specification considerations to ensure beautiful and long lasting installations.

...Read More

Designing Beautiful High-Performance Building Envelopes

The building envelope has a lot of different jobs to do—from insulating the building so that it can be efficiently heated and cooled to providing air and water barriers that keep harmful moisture at bay, as well as providing the aesthetic face of the project. High performance building envelopes do all of those things extremely well. This article explores some of the latest high-performance solutions that can be used to create those high-performance envelopes.

HSW Justification:
A high-performance building envelope is necessary to create a building that is efficient and healthy. This article takes a look at how different components in the building envelope perform—giving architects the information they need to choose high-performance components that will produce a high-performing envelope.

Learning Objective 1:
Compare different types of continuous insulation in terms of the thermal performance they offer and the way they behave when exposed to water and fire.

Learning Objective 2:
Describe how insulated metal panels (IMPs) can be used on the envelope to improve building performance, create efficient and healthy interiors, and enhance design flexibility.

Learning Objective 3:
Explain how PET bottles can be upcycled into insulation creating a new product that contains recycled material and improves thermal performance of the building envelope.

Learning Objective 4:
Describe the ways that architectural metal wall systems enable architects to push the creative boundaries of their designs.

...Read More

Create Intelligent Buildings with Networked Lighting to Improve Tenant Overall Well-Being

This session will present how IoT lighting can be a fundamental platform for smart environments.  Well planned building integration allows a flexible, scalable lighting system to collect the data that ultimately brings more value to the building owner.

At the end of this course, participants will learn:

  1. Define IDA, light pollution, and related terms
  2. Identify the impacts of light pollution
  3. Demonstrate the difference between IDA and non-IDA lighting
  4. Assess the process of establishing IDA certification
...Read More

Introduction to Exterior and Facade Lighting

Program: The Art and Technology of Lighting

This course will explore the use of exterior lighting to illuminate building facades, landscapes, pathways, plazas, and points of interest, like statues. Popular techniques (moonlighting, wall washing, grazing, etc.) will be defined and the performance of various lighting fixtures will be compared to help designers identify the fixtures best-suited for particular applications. Important considerations including: energy codes, dark sky criteria, and occupant safety will be addressed. The renovation of the exterior lighting at the Greater Columbus Convention Center, designed by Ardra Zinkon, will be profiled.

HSW Justification:
Exterior lighting can facilitate the enjoyment of an outdoor space and enhance the feeling of safety and security people experience in these areas, but the design of exterior lighting systems must accomplish more than bathing an area in illumination indiscriminately. Energy codes limit the amount of energy that the lighting system can consume and define lighting controls requirements to minimize energy waste. In addition, the Model Lighting Ordinance (MLO), developed by the International Dark Sky Association (IDA) and the Illuminating Engineering Society (IES), provides guidance on ways to reduce light pollution and glare that can be created by outdoor lighting. This course will provide designers with tips on how to create exterior lighting solutions that satisfy energy codes and dark sky criteria, while providing ample illumination to create beautiful and inviting outdoor spaces.

Learning Objective 1:
Create exterior lighting designs that provide the recommended levels of illumination for highlighting facades, supporting wayfinding, and accenting features of the outdoor space, while satisfying code-mandated energy use and controls requirements as well as dark sky criteria.

...Read More

Designing for Wellness

This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the people in the built environment.

 

Learning Objective 1: Explain how air circulation improves thermal comfort and alertness.

 

Learning Objective 2: Describe the ways that increasing the presence of plants and greenery on a project have been shown to clean the air, reduce urban heat island effect, and positively affect the health and wellbeing of people in the built environment.

 

Learning Objective 3: Summarize how circadian LED lighting technology delivers health benefits—improving overall sleep quality, daytime productivity, and feelings of wellbeing—that modern architectural lighting lacks.

 

Learning Objective 4: Discuss how using an underfloor air distribution system (UFAD) improves indoor air quality.

 

Learning Objective 5: Identify the latest advancements in smart window technology that allows these solutions to control glare and solar heat gains, while maintaining views to the outdoors.

...Read More

Dynamic Lighting - Realities, Practicalities, Potential

Dynamic lighting, also known as tunable, color-changing, and circadian lighting, is being adopted and employed in current lighting designs.  There are many studies showing the benefits of dynamic lighting in built environments.  Early adopters have seeded the market and several lighting manufacturers now employ some level of Dynamic Lighting. This course is intended to explore what  Dynamic Lighting is, how it works in commercial luminaires, how to control it, and where the lighting community is being directed by standards, regulation, and voice of the customer. 

At the end of this course, participants will learn:

  1. Define elements of dynamic lighting.
  2. Learn the uses of dynamic lighting.
  3. See illustrations of how to control dynamic lighting.
  4. Become aware of the regulations, standards, and customer requests that are driving adoption.
...Read More

Exploring Design Trends for K-12 Applications

Addressing student behaviors, improving the learning environment, and enhancing the sustainability of educational buildings with design.

Learning Objective 1: After reading this article, you should be able to: describe how the inclusive restroom design concept addresses the bad behaviors plaguing bathroom spaces and improves student safety

Learning Objective 2: After reading this article, you should be able to: summarize the ways that acoustical surfaces, lighting, and HVAC systems are being used to improve the comfort of the learning environment, helping students perform better in class.

Learning Objective 3: After reading this article, you should be able to: identify various solutions that can be incorporated to heighten security throughout a school.

Learning Objective 4: After reading this article, you should be able to: explain some of the sustainability strategies making schools more environmentally friendly.

...Read More

Wood Without Guilt: Steel Cladding That Perfectly Mimics Real Wood.

This course will describe the aesthetic and biophilic benefits, as well as the objective sustainability standards achieved by innovative metal wall materials that mimic wood. The course will describe how the materials provide both physical and emotional comfort to occupants, protection from harsh weather, and the community benefits of sustainable construction. A variety of applications are also detailed in case studies of actual projects.

Learning Objective 1:
The student will understand how and why the use of materials that mimic but outperform natural materials is highly desirable.

Learning Objective 2:
The student will be able to explain the technologies applied to materials and methods of construction that mimic wood in order to improve sustainability and resist environmental attack.

Learning Objective 3:
The student will recognize the favorability of these materials and methods of construction through a recitation of their achievements in testing and evaluation, how they meet construction standards, and what contributions they make to LEED v4.

Learning Objective 4:
The student will become familiar with a variety of existing projects that demonstrate successful adoption of these products and methods.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×