Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

The History and Impact of Synthetic Turf

This course is designed to teach the history of synthetic turf, its application in water and energy conservation, pollution abatement, sustainable design, and its versatility in numerous landscaping applications and designs. Participants will become knowledgeable about synthetic turf and innovative applications that could be applied to their residential and commercial projects. The most current technological advances in the industry and the positive role synthetic turf plays in the environment.

Learning Objective 1:
Students will gain an increased awareness of the positive environmental impact of synthetic turf on water use, reduced energy demand and reduction of use of fossil fuels, reduced chemical application, and resulting reduction of water and noise pollution.

Learning Objective 2:
Students will become more informed on the newest synthetic turf material technologies available, including the use of soy based materials, as well as how the proper application of infills and proper material selection can benefit the health and safety of athletes.

Learning Objective 3:
Students will be more knowledgeable about the history and evolution of the technology and of landscaping and sports applications using synthetic turf.

Learning Objective 4:
Students will better understand the versatility of synthetic turf and its many uses in sustainable landscape design.

 

...Read More

What Every Design Pro Should Know About the Replica Green Wall Trend

Program: Landscape Environmental Design

This course will describe the replica Green Wall Trend, that is the use of biomimicry in artificial plants in interior and exterior green wall systems. The trend toward biomimicry is driven by low cost, low maintenance, very high quality plant substitutes, and no water, light, power or HVAC resource requirements. Yet, Replica installations provide the same aesthetic and evoke the same desirable biophilic responses as live plants.

HSW Justification:
Replica Green Walls have all the biophilic benefits of green walls, such as promoting healing, reducing anxiety, and attenuating noise. Replica green wall spaces are especially conducive to gathering and can foster community, encourage group meeting and communication, and promote human interaction. In addition, they have added sustainability benefits by eliminating regular maintenance, the need for water for irrigation, or the need for electrical energy for light, or the need for electrical and/or natural gas for heating or cooling.

Learning Objective 1:
Students will be able to define a Replica Green Wall and describe its benefits and advantages

Learning Objective 2:
Students will be able to identify and describe the quality indicators in a green wall, including the types of systems available, the types of foliage available, and the areas of research and development underway.

Learning Objective 3:
Students will be able to describe appropriate applications for a replica green wall.

Learning Objective 4:
Students will be able to list in detail the various methods of installation.

Note: The Continuing Architect is permitting the brand name of this product to be mentioned because it was the only product of its type and is patent pending.

...Read More

Strategies for Designing with Integrated Lighting and Acoustic Solutions

This course will review the importance of acoustics in architecture, discuss the fundamental principles of sound management, explore how to design interior spaces to maximize occupants’ comfort, and review emerging tools to solve for both sound and lighting. It will also focus on the standards that govern acoustic requirements for diverse applications.

...Read More

Create Safer, Healthier, and Better Sounding Interiors

 

Program: Architecture, Design and Building Science

This course explores a few of the many ways that interiors impact the health and well-being of the people inside them. From restrooms being designed to reduce contact with contaminated surfaces and inhibit the presence of bacteria, to acoustics solutions that absorb or isolate noise, making interiors more comfortable and productive. Biophilic design, a health-focused design concept that encourages the inclusion of plants, daylight, and natural elements like wood and stone, is also discussed, as are the options designers have for bringing stone elements inside.

...Read More

Design Building Envelopes That Support Healthy, Efficient Buildings

The building envelope separates the conditioned interior space from the environmental elements of the great outdoors, and this course explores a few solutions to equip the building envelope to defend the interior from nature's onslaughts, manage moisture, improve thermal performance, and admit daylight without glare.

HSW Justification:
Improper use of vapor barriers is one of the leading causes of moisture-related issues in buildings today. Those moisture related issues can include the growth of mold and mildew, which compromises the quality of the indoor environment and can even cause structural damage. Designing a proper air barrier system is crucial to moisture protection and protecting the thermal performance of the original design. This article provides best practices for designing an air barrier system that will function properly. We also discuss some solutions that can improve the functionality of the building envelope’s thermal performance. The course explores a translucent and an opaque solution that improve the thermal performance of the envelope, while offering additional benefits. Translucent wall panels allow diffuse, glare-free daylight into an interior, without compromising thermal efficiency at the opening and precast structural panels offer code-exceeding thermal performance and structural load-bearing capabilities.

Learning Objective 1:
Students will be able to explain why controlling air leakage in the building envelope is crucial to safeguarding the quality of the interior environment and protecting the energy efficiency of the building.

Learning Objective 2:
Students will learn to apply best practices to design an air barrier system that will effectively manage moisture intrusion and avoid moisture-related issues in the building envelope.

Learning Objective 3:
Students will be able to describe how translucent daylight panels allow daylight into the interior, mitigate glare and provide better thermal performance than many other glazing solutions.

Learning Objective 4:
Students will learn to use structural precast concrete panels to reduce the amount of perimeter steel needed on a project, while achieving and exceeding code-compliant thermal performance.

...Read More

Introduction to Exterior and Facade Lighting

Program: The Art and Technology of Lighting

This course will explore the use of exterior lighting to illuminate building facades, landscapes, pathways, plazas, and points of interest, like statues. Popular techniques (moonlighting, wall washing, grazing, etc.) will be defined and the performance of various lighting fixtures will be compared to help designers identify the fixtures best-suited for particular applications. Important considerations including: energy codes, dark sky criteria, and occupant safety will be addressed. The renovation of the exterior lighting at the Greater Columbus Convention Center, designed by Ardra Zinkon, will be profiled.

HSW Justification:
Exterior lighting can facilitate the enjoyment of an outdoor space and enhance the feeling of safety and security people experience in these areas, but the design of exterior lighting systems must accomplish more than bathing an area in illumination indiscriminately. Energy codes limit the amount of energy that the lighting system can consume and define lighting controls requirements to minimize energy waste. In addition, the Model Lighting Ordinance (MLO), developed by the International Dark Sky Association (IDA) and the Illuminating Engineering Society (IES), provides guidance on ways to reduce light pollution and glare that can be created by outdoor lighting. This course will provide designers with tips on how to create exterior lighting solutions that satisfy energy codes and dark sky criteria, while providing ample illumination to create beautiful and inviting outdoor spaces.

Learning Objective 1:
Create exterior lighting designs that provide the recommended levels of illumination for highlighting facades, supporting wayfinding, and accenting features of the outdoor space, while satisfying code-mandated energy use and controls requirements as well as dark sky criteria.

...Read More

Improving Water Conservation in High-Performance Buildings

This course recognizes the flush toilet as one of the biggest users of water and discusses how toilet design is pushing flush technology to develop ways for homes and commercial buildings to conserve water without sacrificing the performance of the toilet. Industry testing protocols and the water-saving capabilities of different technologies are evaluated. Today—as climate change, population growth, and record droughts present an unprecedented strain on our water supply—conservation technology is building awareness to the importance of having the most water-efficient fixtures in a home or business.

...Read More

Wood Without Guilt: Steel Cladding That Perfectly Mimics Real Wood.

This course will describe the aesthetic and biophilic benefits, as well as the objective sustainability standards achieved by innovative metal wall materials that mimic wood. The course will describe how the materials provide both physical and emotional comfort to occupants, protection from harsh weather, and the community benefits of sustainable construction. A variety of applications are also detailed in case studies of actual projects.

Learning Objective 1:
The student will understand how and why the use of materials that mimic but outperform natural materials is highly desirable.

Learning Objective 2:
The student will be able to explain the technologies applied to materials and methods of construction that mimic wood in order to improve sustainability and resist environmental attack.

Learning Objective 3:
The student will recognize the favorability of these materials and methods of construction through a recitation of their achievements in testing and evaluation, how they meet construction standards, and what contributions they make to LEED v4.

Learning Objective 4:
The student will become familiar with a variety of existing projects that demonstrate successful adoption of these products and methods.

...Read More

New Principles in Hospitality Design Using Opening Glass Walls

This course explores the impact of the COVID-19 pandemic on design and construction decisions, particularly focusing on operable glass walls in interior and exterior applications, primarily in the hospitality industry. Students will gain familiarity with terminology, capabilities, and uses of operable glass walls, with an emphasis on addressing health concerns post-pandemic through responsive design. The course highlights how operable glass walls contribute to improving the health, safety, and well-being of building occupants while also providing psychological benefits by creating comfortable environments. Practical design concepts applicable to various commercial projects will be covered, with direct access to manufacturer resources for further assistance.

 

Learning Objective 1: You will be able to identify and recognize the significance of the health concerns related to the COVID-19 pandemic as they relate to building design and product selection.

Learning Objective 2: You will learn how to assess the safety aspects of incorporating design and product selections that protect buildings, occupants, and owners from harm and damage, particularly in light of unexpected violence and vandalism.

Learning Objective 3: You will be able to explain the welfare aspects of design and product selection that enable equitable access to all, can elevate the human experience with daylight and outdoor access, and benefit the environment through sustainable building design.

Learning Objective 4: You will be able to determine ways to incorporate the design principles as presented into different building types and applications.

...Read More

The 60-Minute MBA for Design Professionals

In this session, we will learn the fundamentals of all successful AE firms and provide the basis for making well-grounded business decisions. We will learn how firms can transition from being professionals providing services, to highly tuned businesses that can identify the needs of the marketplace and create services and products that are appropriately priced and yield consistent and greater profits.

Rather than seeking out new projects that merely build upon your current skills, you will start from a business-thinking mindset, where processes that are critical to building a thriving firm are examined and constituted in your firm. We will explore the importance of data within an architect firm and demonstrate how careful collection and interpretation can lead your firm into more exciting and profitable territory.

Following are the course's Learning Objectives:

  1. Identify why a “business-thinking” mindset is of utmost importance for service professionals
  2. Explain best practices for implementing a metrics-oriented leadership system
  3. Summarize how data-based performance management drives smarter business decisions
  4. Analyze how profitability drives growth rather than being merely a result
  5. Reframe your firm as a platform that enables you to achieve your business and personal goals
...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×