Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Design Building Envelopes That Support Healthy, Efficient Buildings

The building envelope separates the conditioned interior space from the environmental elements of the great outdoors, and this course explores a few solutions to equip the building envelope to defend the interior from nature's onslaughts, manage moisture, improve thermal performance, and admit daylight without glare.

HSW Justification:
Improper use of vapor barriers is one of the leading causes of moisture-related issues in buildings today. Those moisture related issues can include the growth of mold and mildew, which compromises the quality of the indoor environment and can even cause structural damage. Designing a proper air barrier system is crucial to moisture protection and protecting the thermal performance of the original design. This article provides best practices for designing an air barrier system that will function properly. We also discuss some solutions that can improve the functionality of the building envelope’s thermal performance. The course explores a translucent and an opaque solution that improve the thermal performance of the envelope, while offering additional benefits. Translucent wall panels allow diffuse, glare-free daylight into an interior, without compromising thermal efficiency at the opening and precast structural panels offer code-exceeding thermal performance and structural load-bearing capabilities.

Learning Objective 1:
Students will be able to explain why controlling air leakage in the building envelope is crucial to safeguarding the quality of the interior environment and protecting the energy efficiency of the building.

Learning Objective 2:
Students will learn to apply best practices to design an air barrier system that will effectively manage moisture intrusion and avoid moisture-related issues in the building envelope.

Learning Objective 3:
Students will be able to describe how translucent daylight panels allow daylight into the interior, mitigate glare and provide better thermal performance than many other glazing solutions.

Learning Objective 4:
Students will learn to use structural precast concrete panels to reduce the amount of perimeter steel needed on a project, while achieving and exceeding code-compliant thermal performance.

...Read More

Leveraging Advances in Parametric Design & Digital Fabrication in Architecture

This course will explore the cutting-edge union of design and technology by delving into parametric design and its symbiosis with digital fabrication, and how the vision is best achieved via vertically-integrated, technology-forward product manufacturers. We will also discuss strategies for effective collaboration with these manufacturers throughout the architectural design process.

Learning Objective 1: Students will learn about the use of parametric design in architecture, including its definition, history and current state.

Learning Objective 2: Students will learn about the marriage between parametric design and digital fabrication.

Learning Objective 3: Students will understand why vertical integration is an important operating model for product manufacturers looking to leverage parametric design.

Learning Objective 4: Students will understand how to partner with vertical manufacturers throughout the architectural design process and learn the advantages of this digital collaborative approach.

...Read More

Designing with Pre-Crimped Woven Wire Mesh

Designing with Pre-Crimped Woven Wire Mesh is a streaming video course that explores interior and exterior applications and functions for woven metal mesh products in architectural design. The course examines key functions of these materials, details the manufacturing process, and outlines critical specification considerations to ensure beautiful and long lasting installations.

...Read More

The Implications of Light Pollution and the Impact of IDA

This course will discuss light pollution and its relation to the International Dark-Sky Association. After taking this course, individuals will know the impacts of light pollution as well as the difference between IDA and non-IDA lighting.

At the end of this course, participants will learn:

  1. To define IDA, light pollution, and related terms
  2. To identify the impacts of light pollution
  3. To demonstrate the difference between IDA and non-IDA lighting
  4. To assess the process of establishing IDA certification
...Read More

924 & 1008 Lighting Controls

NFPA 70, the national electrical code details 2 different types of Emergency Lighting Control Devices—devices that guarantee that life safety lighting will be on at desired illumination levels in the event of an emergency. This course will help mitigate the confusion regarding the specification of these devices and understand their applications in the real world.

Prerequisite Knowledge: Knowledge of life safety systems, particularly a high-level understanding of the purpose of emergency lighting inverters and generators. In particular, ISO-1001/ISO-1002 would be a perfect lead into this course.

HSW Justification: This deals with life safety, the safe egress, and illumination of buildings in the event of an emergency.

Learning Objective 1: Understand the background technology where ALCR and BCELTS devices need to be deployed.

Learning Objective 2: Learn the difference between the technologies and reviews how they sit within one-line diagrams.

Learning Objective 3: Understand some of the real world tradeoffs between the device types as it relates to wiring, proximity and ease of testing.

Learning Objective 4: Understand the integration of lighting controls with the different types of ELCDs and review some tricks for how to reduce costs in systems.

...Read More

What Every Design Pro Should Know About the Replica Green Wall Trend

Program: Landscape Environmental Design

This course will describe the replica Green Wall Trend, that is the use of biomimicry in artificial plants in interior and exterior green wall systems. The trend toward biomimicry is driven by low cost, low maintenance, very high quality plant substitutes, and no water, light, power or HVAC resource requirements. Yet, Replica installations provide the same aesthetic and evoke the same desirable biophilic responses as live plants.

HSW Justification:
Replica Green Walls have all the biophilic benefits of green walls, such as promoting healing, reducing anxiety, and attenuating noise. Replica green wall spaces are especially conducive to gathering and can foster community, encourage group meeting and communication, and promote human interaction. In addition, they have added sustainability benefits by eliminating regular maintenance, the need for water for irrigation, or the need for electrical energy for light, or the need for electrical and/or natural gas for heating or cooling.

Learning Objective 1:
Students will be able to define a Replica Green Wall and describe its benefits and advantages

Learning Objective 2:
Students will be able to identify and describe the quality indicators in a green wall, including the types of systems available, the types of foliage available, and the areas of research and development underway.

Learning Objective 3:
Students will be able to describe appropriate applications for a replica green wall.

Learning Objective 4:
Students will be able to list in detail the various methods of installation.

Note: The Continuing Architect is permitting the brand name of this product to be mentioned because it was the only product of its type and is patent pending.

...Read More

Achieving Beauty, Wellbeing, and Functionality in Design

Beauty, functionality, and wellness-enhancing can co-exist in design, with the right products. This article explores solutions that help architects achieve these important multi-benefits. Pavers that create beautiful outdoor spaces that are easy to maintain. Skylights that allow daylight and fresh air into the interior. Underlayment that improves acoustics and sound management, while protecting the integrity of the interior air quality. Each improves the functionality of the space and the wellness of the people in the built environment.

...Read More

Egress Path Lighting & Emergency Lights ISO 502

This course is designed to introduce the architect to emergency lights. These lights are meant to be selected and installed according to specific standards established by building codes. Additionally, once installed, these systems must be tested to assure their efficacy in case of an emergency. How to select and specify the appropriate markers and the technological solutions available, as well as testing methods, will all be covered in this course.

HSW Justification:
The selection and implementation of a proper emergency lighting program is essential to the life safety of a building's occupants.

Learning Objective 1:
The student will understand egress signage obligations as imposed through building codes and standards.

Learning Objective 2:
The student will further understand the various technologies available to address those signage codes and standards.

Learning Objective 3:
The student will learn what the requirements are to conduct on-going testing of egress systems after installation.

...Read More

Wood Without Guilt: Steel Cladding That Perfectly Mimics Real Wood.

This course will describe the aesthetic and biophilic benefits, as well as the objective sustainability standards achieved by innovative metal wall materials that mimic wood. The course will describe how the materials provide both physical and emotional comfort to occupants, protection from harsh weather, and the community benefits of sustainable construction. A variety of applications are also detailed in case studies of actual projects.

Learning Objective 1:
The student will understand how and why the use of materials that mimic but outperform natural materials is highly desirable.

Learning Objective 2:
The student will be able to explain the technologies applied to materials and methods of construction that mimic wood in order to improve sustainability and resist environmental attack.

Learning Objective 3:
The student will recognize the favorability of these materials and methods of construction through a recitation of their achievements in testing and evaluation, how they meet construction standards, and what contributions they make to LEED v4.

Learning Objective 4:
The student will become familiar with a variety of existing projects that demonstrate successful adoption of these products and methods.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×