Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

924 & 1008 Lighting Controls

NFPA 70, the national electrical code details 2 different types of Emergency Lighting Control Devices—devices that guarantee that life safety lighting will be on at desired illumination levels in the event of an emergency. This course will help mitigate the confusion regarding the specification of these devices and understand their applications in the real world.

Prerequisite Knowledge: Knowledge of life safety systems, particularly a high-level understanding of the purpose of emergency lighting inverters and generators. In particular, ISO-1001/ISO-1002 would be a perfect lead into this course.

HSW Justification: This deals with life safety, the safe egress, and illumination of buildings in the event of an emergency.

Learning Objective 1: Understand the background technology where ALCR and BCELTS devices need to be deployed.

Learning Objective 2: Learn the difference between the technologies and reviews how they sit within one-line diagrams.

Learning Objective 3: Understand some of the real world tradeoffs between the device types as it relates to wiring, proximity and ease of testing.

Learning Objective 4: Understand the integration of lighting controls with the different types of ELCDs and review some tricks for how to reduce costs in systems.

...Read More

Pushing the Boundaries of Form and Function

As architects and clients alike demand the creation of what’s next, design teams rely on new product systems and solutions to help them push the boundaries of form and function. This article profiles a few solutions that enable architects to create distinct building envelopes that don’t sacrifice on the efficient performance or sustainable design considerations that also occupy prominent spots on almost every client’s wish list.

HSW Justification:
This article explores solutions that enable architects to deliver a desired aesthetic that also performs efficiently and offers sustainable design benefits. For example, thermal barriers in the aluminum framing that hold the glazing in place allows architects to complete historic renovation projects that exceed thermal performance targets, without compromising the integrity of the historical aesthetic. Composite metal panel systems that support very unique applications and creative demands from design teams can also offer top-tier performance in terms of fire-, water-, and impact-resistance. Extruded aluminum trim beautifully meshes different types of exterior cladding, while helping the envelope to better manage moisture.

Learning Objective 1:
Explain how incorporating thermal barriers into the aluminum framing in the fenestration of the Crosstown Concourse helped the project become the world’s largest LEED Platinum historic rehabilitation project, while maintaining the integrity of its historic aesthetic.

Learning Objective 2:
Specify a composite metal panel system that offers the resistance to fire, water, and impact best-suited to the needs of a particular project.

Learning Objective 3:
List the aesthetic and sustainability-related benefits of specifying extruded aluminum trim on an exterior cladding.

Learning Objective 4:
Describe how the different finishes of precast concrete used in the façade of the Ale Asylum were reverse engineered to perfectly match the concept originally pitched and accepted by the city.

...Read More

Introduction to Exterior and Facade Lighting

Program: The Art and Technology of Lighting

This course will explore the use of exterior lighting to illuminate building facades, landscapes, pathways, plazas, and points of interest, like statues. Popular techniques (moonlighting, wall washing, grazing, etc.) will be defined and the performance of various lighting fixtures will be compared to help designers identify the fixtures best-suited for particular applications. Important considerations including: energy codes, dark sky criteria, and occupant safety will be addressed. The renovation of the exterior lighting at the Greater Columbus Convention Center, designed by Ardra Zinkon, will be profiled.

HSW Justification:
Exterior lighting can facilitate the enjoyment of an outdoor space and enhance the feeling of safety and security people experience in these areas, but the design of exterior lighting systems must accomplish more than bathing an area in illumination indiscriminately. Energy codes limit the amount of energy that the lighting system can consume and define lighting controls requirements to minimize energy waste. In addition, the Model Lighting Ordinance (MLO), developed by the International Dark Sky Association (IDA) and the Illuminating Engineering Society (IES), provides guidance on ways to reduce light pollution and glare that can be created by outdoor lighting. This course will provide designers with tips on how to create exterior lighting solutions that satisfy energy codes and dark sky criteria, while providing ample illumination to create beautiful and inviting outdoor spaces.

Learning Objective 1:
Create exterior lighting designs that provide the recommended levels of illumination for highlighting facades, supporting wayfinding, and accenting features of the outdoor space, while satisfying code-mandated energy use and controls requirements as well as dark sky criteria.

...Read More

Egress Marking and Illumination ISO-0501

This course is designed to introduce the architect to egress marking systems that are used for ordinary way finding and building evacuation in emergency situations. These signage systems are meant to be selected and installed according to specific standards established by building codes. Additionally, once installed, these systems must be tested to assure their efficacy in case of an emergency. How to select and specify the appropriate markers and the technological solutions available, as well as testing methods, will all be covered in this course.

HSW Justification:
Building exit markings are critical to the health, safety, and welfare of building occupants during emergency situations.

Learning Objective 1:
When this course is complete the student will will understand egress signage obligations as imposed through building codes and standards.

Learning Objective 2:
The student will further understand the various technologies available to address those signage codes and standards.

Learning Objective 3:
And, the student will learn what the requirements are to conduct on-going testing of egress systems after installation.

...Read More

Performance Fabrics in Sustainable Design

This course aims to help educate the designer about what performance fabrics are, the content of various fabrics, how they work, and the benefits to a sustainable design in meeting and maximizing your goals of occupant health, safety, well-being, and sustainability. Windows, views, and openings in buildings present the classic battle between form and function. The designer naturally wants the building’s occupants to enjoy views and light, but the solar heat gain from these openings can wreak havoc on sustainable goals. Sophisticated and high-performing solar control fabrics can help reconcile the form and function of light, views, and sustainability.

HSW Justification: Substantially all of this course is dedicated to a discussion of the health, safety and welfare aspects of performance fabrics through their appropriate specification, their fabrics' chemical composition, their proper use, their ability to meet safety and performance standards, and their aesthetic contribution.

Learning Objective 1: The student will learn how to analyze shading fabrics for solar light management including energy reduction, glare and outward visibility, using published shading coefficient data.

Learning Objective 2: The student will be able to list certification requirements for indoor air quality, anti-bacterial protection, flame retardancy, and environmental regulations.

Learning Objective 3: The student will be able to identify fabric composition options with an emphasis on sustainable design.

Learning Objective 4: The student will be able to apply their knowledge of performance fabric features to unique, real-world applications in healthcare, hospitality, government, business, and residential projects.

...Read More

Egress Path Lighting & Emergency Lights ISO 502

This course is designed to introduce the architect to emergency lights. These lights are meant to be selected and installed according to specific standards established by building codes. Additionally, once installed, these systems must be tested to assure their efficacy in case of an emergency. How to select and specify the appropriate markers and the technological solutions available, as well as testing methods, will all be covered in this course.

HSW Justification:
The selection and implementation of a proper emergency lighting program is essential to the life safety of a building's occupants.

Learning Objective 1:
The student will understand egress signage obligations as imposed through building codes and standards.

Learning Objective 2:
The student will further understand the various technologies available to address those signage codes and standards.

Learning Objective 3:
The student will learn what the requirements are to conduct on-going testing of egress systems after installation.

...Read More

Designing with Pre-Crimped Woven Wire Mesh

Designing with Pre-Crimped Woven Wire Mesh is a streaming video course that explores interior and exterior applications and functions for woven metal mesh products in architectural design. The course examines key functions of these materials, details the manufacturing process, and outlines critical specification considerations to ensure beautiful and long lasting installations.

...Read More

An Introduction to Custom Balanced Doors

This course will introduce you to the custom balanced door. You will learn about the system components and the differences between a Balanced door and a conventional hinged or pivoted swing door. Then we'll take a closer look at how a balanced door works in an installation. Finally you'll learn about the specific engineering requirements needed to accommodate balanced doors.

HSW Justification:
Balanced doors are safer than conventional doors because they require a smaller interference zone on the sidewalk. Also, they open with ease which benefits smaller people, weak or disabled persons, and the elderly. The majority of this course deals with those benefits and with the mechanical features of the door that make these health and safety benefits possible.

Learning Objective 1:
Understand the differences between the balanced door and a conventional hinged or pivoted swing door

Learning Objective 2:
Know specific requirements for ADA handicap guidelines LO 5: Understand how the balanced door interfaces with power operation LO 6: Understand specific engineering requirements to accommodate balanced doors

Learning Objective 3:
Understand what components make up a typical balanced door system

Learning Objective 4:
Know how the design concept works in an actual installation

...Read More

Pattern Mapping for Lasting Design

The pattern map evaluates a pattern on two key elements: structure and nature. This course explains why these two elements affect how we recognize and respond to patterns and examines ways to bridge architecture and nature by using architectural panel systems with patterned openings, and provide a sense of space, privacy, shade, or camouflage with cladding, screens, or railings.

 

HSW Justification: Architectural use of patterns plays a vital role in enhancing the Health, Safety, and Welfare (HSW) in of our built environments. Our mental well-being, for example, can be positively impacted through organic biophilic geometries that connect occupants to nature to positively affect mood and reduce stress, while geometric or crystalline patterns create the dynamic visual interest necessary for effective way-finding elements to prevent accidents and ensure safer navigation. Some patterns can also be visually transparent while others act as camouflage which can be an important consideration for surface treatment in circulation areas. From a macro perspective, patterns can promote inclusivity and community engagement, while enriching their overall user experience.

 

Learning Objective 1: Students will learn to compare patterns on a pattern map and explore how different geometries are perceived and processed in the mind of the user, how they contribute to issues affecting safety, and even encourage engagement in built environments.

 

Learning Objective 2: Students will learn to explain how different characteristics and application of a pattern’s functionality can impact on how we perceive visual space to improve safety and social interaction, as well as contribute to positive mental health.

 

Learning Objective 3: Students will learn the importance of selecting the most appropriate openness factor and base material for the given project objectives, for example, how to enhance natural light, improve air quality, and create a welcoming atmosphere in built environments.

 

Learning Objective 4: Students will learn how to apply HSW Best Practices to provide privacy, facade screening, camouflage, shade, or railings with architectural panels with patterned openings to best create a positive user experience.

...Read More

How Wallcoverings with PVF Film Contribute  to Healthier and More Attractive Buildings

This course will cover the aesthetic, design, health, safety and welfare aspects of, and certifications achieved by wallcoverings laminated with DuPont™ Tedlar® polyvinyl fluoride film. Because Dupont™ is the only source for Tedlar® film there is no comparable competitive product in the market place. Therefore, we will be referring to the product from time to time by using its registered trademark brand name, Tedlar®.

HSW Justification:
Tedlar PVF film is applied to wallcovering to prevent off-gassing of building materials behind the wall. The film also is repeatedly and frequently cleanable without damage or deterioration. It does not support the growth o=f microorganisms, mold or mildew and is therefore excennent in restaurant and hospital settings. Additionally, the film is impossible to permanently stain. Stains wipe off with ease. Learning objectives cite additional HSW benefits.

Learning Objective 1:
The architect will recognize the aesthetic and design advantages of using PVF film on wallcoverings and architectural surfaces.

Learning Objective 2:
The architect will understand the health and safety advantages of using PVF film wallcoverings in occupied spaces.

Learning Objective 3:
The architect will be able to identify appropriate interior and exterior applications for wallcoverings protected by PVF film.

Learning Objective 4:
And, the architect will understand the ratings and certifications achieved by Tedlar® laminated wallcoverings.

Because Dupont™ is the only source for Tedlar® film there is no comparable competitive product in the market place. Therefore, we will be referring to the product from time to time by using its registered trademark brand name, Tedlar®.

Owing to the unique nature of this product, an architectural specification describing the PVF film known as Tedlar®. You will need to download this document to begin the course. At least one of the concluding quiz questions is based on this supplemental material.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×