Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Sustainable Resiliency with Garden Roofs

Designing with green roofs affords design professionals opportunities to plan projects with exciting new elements, added value, and significant, tangible benefits, thereby enhancing the built environment with newly-created landscapes. This course examines green roof systems, including the types, benefits, components, and related standards. It also reviews a number of installations that demonstrate these principles.

...Read More

Designing Beautiful High-Performance Building Envelopes

The building envelope has a lot of different jobs to do—from insulating the building so that it can be efficiently heated and cooled to providing air and water barriers that keep harmful moisture at bay, as well as providing the aesthetic face of the project. High performance building envelopes do all of those things extremely well. This article explores some of the latest high-performance solutions that can be used to create those high-performance envelopes.

HSW Justification:
A high-performance building envelope is necessary to create a building that is efficient and healthy. This article takes a look at how different components in the building envelope perform—giving architects the information they need to choose high-performance components that will produce a high-performing envelope.

Learning Objective 1:
Compare different types of continuous insulation in terms of the thermal performance they offer and the way they behave when exposed to water and fire.

Learning Objective 2:
Describe how insulated metal panels (IMPs) can be used on the envelope to improve building performance, create efficient and healthy interiors, and enhance design flexibility.

Learning Objective 3:
Explain how PET bottles can be upcycled into insulation creating a new product that contains recycled material and improves thermal performance of the building envelope.

Learning Objective 4:
Describe the ways that architectural metal wall systems enable architects to push the creative boundaries of their designs.

...Read More

ISO-1002: Inverters

Inverters are a modern, simple way to achieve an emergency lighting solution while minimizing maintenance costs and utilizing existing architectural fixtures for emergency purposes. This course will give the student the skills they require to design and specify inverter-based emergency lighting systems.

...Read More

Pushing the Boundaries of Form and Function

As architects and clients alike demand the creation of what’s next, design teams rely on new product systems and solutions to help them push the boundaries of form and function. This article profiles a few solutions that enable architects to create distinct building envelopes that don’t sacrifice on the efficient performance or sustainable design considerations that also occupy prominent spots on almost every client’s wish list.

HSW Justification:
This article explores solutions that enable architects to deliver a desired aesthetic that also performs efficiently and offers sustainable design benefits. For example, thermal barriers in the aluminum framing that hold the glazing in place allows architects to complete historic renovation projects that exceed thermal performance targets, without compromising the integrity of the historical aesthetic. Composite metal panel systems that support very unique applications and creative demands from design teams can also offer top-tier performance in terms of fire-, water-, and impact-resistance. Extruded aluminum trim beautifully meshes different types of exterior cladding, while helping the envelope to better manage moisture.

Learning Objective 1:
Explain how incorporating thermal barriers into the aluminum framing in the fenestration of the Crosstown Concourse helped the project become the world’s largest LEED Platinum historic rehabilitation project, while maintaining the integrity of its historic aesthetic.

Learning Objective 2:
Specify a composite metal panel system that offers the resistance to fire, water, and impact best-suited to the needs of a particular project.

Learning Objective 3:
List the aesthetic and sustainability-related benefits of specifying extruded aluminum trim on an exterior cladding.

Learning Objective 4:
Describe how the different finishes of precast concrete used in the façade of the Ale Asylum were reverse engineered to perfectly match the concept originally pitched and accepted by the city.

...Read More

Designing for Wellness

This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the people in the built environment.

 

Learning Objective 1: Explain how air circulation improves thermal comfort and alertness.

 

Learning Objective 2: Describe the ways that increasing the presence of plants and greenery on a project have been shown to clean the air, reduce urban heat island effect, and positively affect the health and wellbeing of people in the built environment.

 

Learning Objective 3: Summarize how circadian LED lighting technology delivers health benefits—improving overall sleep quality, daytime productivity, and feelings of wellbeing—that modern architectural lighting lacks.

 

Learning Objective 4: Discuss how using an underfloor air distribution system (UFAD) improves indoor air quality.

 

Learning Objective 5: Identify the latest advancements in smart window technology that allows these solutions to control glare and solar heat gains, while maintaining views to the outdoors.

...Read More

Pattern Mapping for Lasting Design

The pattern map evaluates a pattern on two key elements: structure and nature. This course explains why these two elements affect how we recognize and respond to patterns and examines ways to bridge architecture and nature by using architectural panel systems with patterned openings, and provide a sense of space, privacy, shade, or camouflage with cladding, screens, or railings.

 

HSW Justification: Architectural use of patterns plays a vital role in enhancing the Health, Safety, and Welfare (HSW) in of our built environments. Our mental well-being, for example, can be positively impacted through organic biophilic geometries that connect occupants to nature to positively affect mood and reduce stress, while geometric or crystalline patterns create the dynamic visual interest necessary for effective way-finding elements to prevent accidents and ensure safer navigation. Some patterns can also be visually transparent while others act as camouflage which can be an important consideration for surface treatment in circulation areas. From a macro perspective, patterns can promote inclusivity and community engagement, while enriching their overall user experience.

 

Learning Objective 1: Students will learn to compare patterns on a pattern map and explore how different geometries are perceived and processed in the mind of the user, how they contribute to issues affecting safety, and even encourage engagement in built environments.

 

Learning Objective 2: Students will learn to explain how different characteristics and application of a pattern’s functionality can impact on how we perceive visual space to improve safety and social interaction, as well as contribute to positive mental health.

 

Learning Objective 3: Students will learn the importance of selecting the most appropriate openness factor and base material for the given project objectives, for example, how to enhance natural light, improve air quality, and create a welcoming atmosphere in built environments.

 

Learning Objective 4: Students will learn how to apply HSW Best Practices to provide privacy, facade screening, camouflage, shade, or railings with architectural panels with patterned openings to best create a positive user experience.

...Read More

Improving Water Conservation in High-Performance Buildings

This course recognizes the flush toilet as one of the biggest users of water and discusses how toilet design is pushing flush technology to develop ways for homes and commercial buildings to conserve water without sacrificing the performance of the toilet. Industry testing protocols and the water-saving capabilities of different technologies are evaluated. Today—as climate change, population growth, and record droughts present an unprecedented strain on our water supply—conservation technology is building awareness to the importance of having the most water-efficient fixtures in a home or business.

...Read More

Customizable Acoustical Solutions for Open Plenum Design

Modern open spaces create a unique set of challenges when it comes to acoustics, particularly because many new buildings are designed with open plans and open plenums. Fortunately, there are innovative acoustic systems on the market that are designed to integrate with open plenums that can help to overcome these challenges. This course will discuss customizable acoustical solutions for open plenum design, including baffles, beams, clouds, and acoustical wall panels, which are available in a variety of materials like metal, wood, fiberglass, and felt. The course will explore the importance of acoustical design and how these open plenum ceiling systems can transform a space aesthetically while maximizing acoustics.

...Read More

924 & 1008 Lighting Controls

NFPA 70, the national electrical code details 2 different types of Emergency Lighting Control Devices—devices that guarantee that life safety lighting will be on at desired illumination levels in the event of an emergency. This course will help mitigate the confusion regarding the specification of these devices and understand their applications in the real world.

Prerequisite Knowledge: Knowledge of life safety systems, particularly a high-level understanding of the purpose of emergency lighting inverters and generators. In particular, ISO-1001/ISO-1002 would be a perfect lead into this course.

HSW Justification: This deals with life safety, the safe egress, and illumination of buildings in the event of an emergency.

Learning Objective 1: Understand the background technology where ALCR and BCELTS devices need to be deployed.

Learning Objective 2: Learn the difference between the technologies and reviews how they sit within one-line diagrams.

Learning Objective 3: Understand some of the real world tradeoffs between the device types as it relates to wiring, proximity and ease of testing.

Learning Objective 4: Understand the integration of lighting controls with the different types of ELCDs and review some tricks for how to reduce costs in systems.

...Read More

Strategies for Designing with Integrated Lighting and Acoustic Solutions

This course will review the importance of acoustics in architecture, discuss the fundamental principles of sound management, explore how to design interior spaces to maximize occupants’ comfort, and review emerging tools to solve for both sound and lighting. It will also focus on the standards that govern acoustic requirements for diverse applications.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×