Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

The History and Impact of Synthetic Turf

This course is designed to teach the history of synthetic turf, its application in water and energy conservation, pollution abatement, sustainable design, and its versatility in numerous landscaping applications and designs. Participants will become knowledgeable about synthetic turf and innovative applications that could be applied to their residential and commercial projects. The most current technological advances in the industry and the positive role synthetic turf plays in the environment.

Learning Objective 1:
Students will gain an increased awareness of the positive environmental impact of synthetic turf on water use, reduced energy demand and reduction of use of fossil fuels, reduced chemical application, and resulting reduction of water and noise pollution.

Learning Objective 2:
Students will become more informed on the newest synthetic turf material technologies available, including the use of soy based materials, as well as how the proper application of infills and proper material selection can benefit the health and safety of athletes.

Learning Objective 3:
Students will be more knowledgeable about the history and evolution of the technology and of landscaping and sports applications using synthetic turf.

Learning Objective 4:
Students will better understand the versatility of synthetic turf and its many uses in sustainable landscape design.

 

...Read More

An Introduction to Custom Balanced Doors

This course will introduce you to the custom balanced door. You will learn about the system components and the differences between a Balanced door and a conventional hinged or pivoted swing door. Then we'll take a closer look at how a balanced door works in an installation. Finally you'll learn about the specific engineering requirements needed to accommodate balanced doors.

HSW Justification:
Balanced doors are safer than conventional doors because they require a smaller interference zone on the sidewalk. Also, they open with ease which benefits smaller people, weak or disabled persons, and the elderly. The majority of this course deals with those benefits and with the mechanical features of the door that make these health and safety benefits possible.

Learning Objective 1:
Understand the differences between the balanced door and a conventional hinged or pivoted swing door

Learning Objective 2:
Know specific requirements for ADA handicap guidelines LO 5: Understand how the balanced door interfaces with power operation LO 6: Understand specific engineering requirements to accommodate balanced doors

Learning Objective 3:
Understand what components make up a typical balanced door system

Learning Objective 4:
Know how the design concept works in an actual installation

...Read More

Lighting Overview for Healthcare Facilities

 The class is a high-density orientation to lighting considerations and methods in the healthcare environment. Topics will include application situations, impacted populations, design methods, and a review and critique of examples of successful and less-than-successful healthcare lighting designs.

At the end of this course, participants will:

  1. Identify current trends in the healthcare lighting design and the impact lighting has on its occupants and the environment. 
  2. Identify who is impacted by our lighting design decisions and learn best practices on how to light the spaces they occupy.
  3. Identify specific lighting needs of patient rooms.
  4. Identify emerging lighting methods including design for circadian health.
...Read More

Dynamic Lighting - Realities, Practicalities, Potential

Dynamic lighting, also known as tunable, color-changing, and circadian lighting, is being adopted and employed in current lighting designs.  There are many studies showing the benefits of dynamic lighting in built environments.  Early adopters have seeded the market and several lighting manufacturers now employ some level of Dynamic Lighting. This course is intended to explore what  Dynamic Lighting is, how it works in commercial luminaires, how to control it, and where the lighting community is being directed by standards, regulation, and voice of the customer. 

At the end of this course, participants will learn:

  1. Define elements of dynamic lighting.
  2. Learn the uses of dynamic lighting.
  3. See illustrations of how to control dynamic lighting.
  4. Become aware of the regulations, standards, and customer requests that are driving adoption.
...Read More

Designing with Pre-Crimped Woven Wire Mesh

Designing with Pre-Crimped Woven Wire Mesh is a streaming video course that explores interior and exterior applications and functions for woven metal mesh products in architectural design. The course examines key functions of these materials, details the manufacturing process, and outlines critical specification considerations to ensure beautiful and long lasting installations.

...Read More

Wood Without Guilt: Steel Cladding That Perfectly Mimics Real Wood.

This course will describe the aesthetic and biophilic benefits, as well as the objective sustainability standards achieved by innovative metal wall materials that mimic wood. The course will describe how the materials provide both physical and emotional comfort to occupants, protection from harsh weather, and the community benefits of sustainable construction. A variety of applications are also detailed in case studies of actual projects.

Learning Objective 1:
The student will understand how and why the use of materials that mimic but outperform natural materials is highly desirable.

Learning Objective 2:
The student will be able to explain the technologies applied to materials and methods of construction that mimic wood in order to improve sustainability and resist environmental attack.

Learning Objective 3:
The student will recognize the favorability of these materials and methods of construction through a recitation of their achievements in testing and evaluation, how they meet construction standards, and what contributions they make to LEED v4.

Learning Objective 4:
The student will become familiar with a variety of existing projects that demonstrate successful adoption of these products and methods.

...Read More

Sustainable Resiliency with Garden Roofs

Designing with green roofs affords design professionals opportunities to plan projects with exciting new elements, added value, and significant, tangible benefits, thereby enhancing the built environment with newly-created landscapes. This course examines green roof systems, including the types, benefits, components, and related standards. It also reviews a number of installations that demonstrate these principles.

...Read More

Designing for Wellness

This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the people in the built environment.

 

Learning Objective 1: Explain how air circulation improves thermal comfort and alertness.

 

Learning Objective 2: Describe the ways that increasing the presence of plants and greenery on a project have been shown to clean the air, reduce urban heat island effect, and positively affect the health and wellbeing of people in the built environment.

 

Learning Objective 3: Summarize how circadian LED lighting technology delivers health benefits—improving overall sleep quality, daytime productivity, and feelings of wellbeing—that modern architectural lighting lacks.

 

Learning Objective 4: Discuss how using an underfloor air distribution system (UFAD) improves indoor air quality.

 

Learning Objective 5: Identify the latest advancements in smart window technology that allows these solutions to control glare and solar heat gains, while maintaining views to the outdoors.

...Read More

The Implications of Light Pollution and the Impact of IDA

This course will discuss light pollution and its relation to the International Dark-Sky Association. After taking this course, individuals will know the impacts of light pollution as well as the difference between IDA and non-IDA lighting.

At the end of this course, participants will learn:

  1. To define IDA, light pollution, and related terms
  2. To identify the impacts of light pollution
  3. To demonstrate the difference between IDA and non-IDA lighting
  4. To assess the process of establishing IDA certification
...Read More

Performance Fabrics in Sustainable Design

This course aims to help educate the designer about what performance fabrics are, the content of various fabrics, how they work, and the benefits to a sustainable design in meeting and maximizing your goals of occupant health, safety, well-being, and sustainability. Windows, views, and openings in buildings present the classic battle between form and function. The designer naturally wants the building’s occupants to enjoy views and light, but the solar heat gain from these openings can wreak havoc on sustainable goals. Sophisticated and high-performing solar control fabrics can help reconcile the form and function of light, views, and sustainability.

HSW Justification: Substantially all of this course is dedicated to a discussion of the health, safety and welfare aspects of performance fabrics through their appropriate specification, their fabrics' chemical composition, their proper use, their ability to meet safety and performance standards, and their aesthetic contribution.

Learning Objective 1: The student will learn how to analyze shading fabrics for solar light management including energy reduction, glare and outward visibility, using published shading coefficient data.

Learning Objective 2: The student will be able to list certification requirements for indoor air quality, anti-bacterial protection, flame retardancy, and environmental regulations.

Learning Objective 3: The student will be able to identify fabric composition options with an emphasis on sustainable design.

Learning Objective 4: The student will be able to apply their knowledge of performance fabric features to unique, real-world applications in healthcare, hospitality, government, business, and residential projects.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×